Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Gravitationswellen: Am Puls der Raumzeit

Drei Jahre nach dem ersten Nachweis der Raumzeitschwingungen haben sich Wissenschaftler ehrgeizige Ziele gesetzt: Sie wollen das Innere von Neutronen­sternen entschlüsseln und die Expansion des Weltalls vermessen – und besser als bisher das Wesen Schwarzer Löcher verstehen.
Simulation von Gravitationswellen

Mitte der 1980er Jahre fand der US-amerikanische Physiker Bernard Schutz eine neue Lösung für eines der ältesten Probleme der Astronomie: Wie misst man die Entfernung eines Himmelsobjekts von der Erde? Seit Generationen verwenden Forscher die Helligkeit von Sternen als kosmisches Metermaß. Doch das bringt zahlreiche Komplikationen mit sich. So können nahe und schwach leuchtende Sterne vortäuschen, sie seien weit entfernt und deutlich heller.

Gravitationswellen wären eine bessere kosmische Messlatte, erkannte Schutz, der an der Car­diff University in Großbritannien forscht. Diese Schwingungen der Raumzeit waren damals nicht mehr als eine Vorhersage von Albert Einsteins allgemeiner Relativitätstheorie. Sie entstehen, wenn massereiche Objekte, beispielsweise Schwarze Löcher, schnell beschleunigt werden. Schutz erkannte: Sollte ein Detektor die Wellen eines Tages auffangen, dann ließe sich leicht ausrechnen, wie stark das Signal bei der Aussendung war und welche Strecke es bis zur Erde zurückgelegt hat. Mit Gravitationswellen müsste sich also sehr genau die Expansion des Kosmos vermessen lassen ...

Kennen Sie schon …

Spektrum - Die Woche – Der Umbau der Chemieindustrie

Täglich entstehen in riesigen Fabriken zahllose Stoffe, die wir in unserem Alltag nutzen – allerdings nur dank fossiler Rohstoffe und eines extrem hohen Energieverbrauchs. In dieser »Woche« geht es um den Umbau der Chemieindustrie hin zur Klimaneutralität. Außerdem: Gibt es sie, die »Zuckersucht«?

Spektrum der Wissenschaft – Leere im Kosmos

Es gibt riesige, Voids genannte, Bereiche im Universum, in denen praktisch keine Materie vorkommt. Ihre ungeheure Leere könnte helfen, einige hartnäckige Rätsel der modernen Kosmologie zu lösen. Außerdem: Viele Menschen haben angeblich einen Mangel an Vitamin D. Studien zeigen, von einer zusätzlichen Vitamin-D-Gabe profitieren wohl deutlich weniger Menschen als gedacht. Mehrere Forschungsgruppen und Unternehmen machen Jagd nach dem Majorana-Quasiteilchen, da dieses Quantencomputer dramatisch verbessern könnte. Wie kann Aufforstung angesichts von Klimawandel und Schädlingsbefall gelingen? Natürliche Erneuerung und andere Baumarten lassen auf einen gesunden Wald hoffen.

Spektrum - Die Woche – Chinas gigantischer Neutrinodetektor geht an den Start

In dieser Ausgabe der »Woche« gehen wir einem der größten Rätsel der Physik nach: der bisher nicht messbaren Masse von Neutrinos. Um der Lösung ein Stück näher zu kommen, wird in China gerade eine riesige neue Forschungsanlage unter der Erde gebaut. Außerdem: Wie konnten Sauropoden so riesig werden?

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Farr, W. et al.: Distinguishing Spin-Aligned and Isotropic Black Hole Populations with Gravitational Waves. In: Nature 548, S. 426–429, 2017

Schutz, B. F.: Determining the Hubble Constant from Gravitational Wave Observations. In: Nature 323,S. 310–311, 1986

Smartt, S. J. et al.: A Kilonova as the Electromagnetic Counterpart to a Gravitational-Wave Source. In: Nature 551, S. 75–79, 2017

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.